
DBHDS Business Solution Development

Jefferson Building, 5
rd

 Floor

mario.epps@dbhds.virginia.gov

Application Architect: Mario Epps

.NET Framework Guidelines and Best Practices

DBHDS Business Solution Development

Jefferson Building, 5
rd

 Floor

mario.epps@dbhds.virginia.gov

Application Architect: Mario Epps

Department of Behavioral Health and Developmental Services - Abstract

Abstract

This document describes the coding style guidelines for native .NET (C# and VB.NET) programming used

by the Business Solutions Development team.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 1 Mario A. Epps
 2.0

Contents

Department of Behavioral Health and Developmental Services - Abstract ... 2

Overview .. 3

1.1 Principles & Themes 3

General Coding Standards... 5

2.1 Clarity and Consistency 5

2.2 Formatting and Style 5

2.3 Using Libraries 7

2.4 Global Variables 7

2.5 Variable Declarations and Initializations 7

2.6 Function Declarations and Calls 8

2.7 Statements 10

2.8 Enums 11

2.8.1 Flag Enums 14

.NET Coding Standards ... 18

3.1 Design Guidelines for Developing Class Libraries 18

3.2 Files and Structure 18

3.3 Assembly Properties 18

3.4 Naming Conventions 18

3.4.1 General Naming Conventions 18

3.4.2 Capitalization Naming Rules for Identifiers 19

3.4.3 Hungarian Notation 22

3.4.4 UI Control Naming Conventions 22

3.5 Constants 23

3.6 Strings 24

3.7 Arrays and Collections 26

3.8 Structures 29

3.8.1 Structures vs. Classes 29

3.9 Classes 29

3.9.1 Fields 30

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 2 Mario A. Epps
 2.0

3.9.2 Properties 30

3.9.3 Constructors 30

3.9.4 Methods 31

3.9.5 Events 31

3.9.6 Member Overloading 31

3.9.7 Interface Members 32

3.9.8 Virtual Members 32

3.9.9 Static Classes 33

3.9.10 Abstract Classes 33

3.10 Namespaces 34

3.11 Errors and Exceptions 34

3.11.1 Exception Throwing 34

3.11.2 Exception Handling 35

3.12 Resource Cleanup 39

3.12.1 Try-finally Block 39

3.12.2 Basic Dispose Pattern 40

3.12.3 Finalizable Types 48

Appendix A - Software Design Checklist – Form ... 56

Appendix B - Deployment Assessment Checklist – Form ... 58

Appendix C - DBHDS (Central Office) Software Development Platform Inventory ... 61

Appendix D - References ... 63

Revision History ... 64

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 3 Mario A. Epps
 2.0

Overview

This document defines the native .NET coding standard for the Business Solutions Development team project team. This

standard derives from the experience of product development efforts and is continuously evolving. If you discover a new

best practice or a topic that is not covered, please bring that to the attention of the Business Solutions Development team

and have the conclusion added to this document.

No set of guidelines will satisfy everyone. The goal of a standard is to create efficiencies across a community of developers.

Applying a set of well-defined coding standards will result in code with fewer bugs, and better maintainability.

1.1 Principles & Themes

High-quality samples exhibit the following characteristics because customers use them as examples of best practices:

1. Understandable. Samples must be clearly readable and straightforward. They must showcase the key things

they’re designed to demonstrate. The relevant parts of a sample should be easy to reuse. Samples should not

contain unnecessary code. They must include appropriate documentation.

2. Correct. Samples must demonstrate properly how to perform the key things they are designed to teach. They

must compile cleanly, run correctly as documented, and be tested.

3. Consistent. Samples should follow consistent coding style and layout to make the code easier to read. Likewise,

samples should be consistent with each other to make them easier to use together. Consistency shows

craftsmanship and attention to detail.

4. Modern. Samples should demonstrate current practices such as use of Unicode, error handling, defensive

programming, and portability. They should use current recommendations for runtime library and API functions.

They should use recommended project & build settings.

5. Safe. Samples must comply with legal, privacy, and policy standards. They must not demonstrate hacks or poor

programming practices. They must not permanently alter machine state. All installation and execution steps must

be reversible.

6. Secure. The samples should demonstrate how to use secure programming practices such as least privilege, secure

versions of runtime library functions, and SDL-recommended project settings.

1.2 Terminology

Through-out this document there will be recommendations or suggestions for standards and practices. Some practices are

very important and must be followed, others are guidelines that are beneficial in certain scenarios but are not applicable

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 4 Mario A. Epps
 2.0

everywhere. In order to clearly state the intent of the standards and practices that are discussed we will use the following

terminology.

Wording Intent Justification

 Do... This standard or practice should be followed in all cases.

If you think that your specific application is exempt, it

probably isn't.

These standards are present to mitigate

bugs.

 Do Not... This standard or practice should never be applied.

 You

should...

This standard or practice should be followed in most

cases.

These standards are typically stylistic

and attempt to promote a consistent

and clear style.
 You should

not...

This standard or practice should not be followed, unless

there's reasonable justification.

 You can… This standard or practice can be followed if you want to;

it's not necessarily good or bad. There are probably

implications to following the practice (dependencies, or

constraints) that should be considered before adopting it.

These standards are typically stylistic,

but are not ubiquitously adopted.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 5 Mario A. Epps
 2.0

General Coding Standards

These general coding standards can be applied to all languages - they provide high-level guidance to the style, formatting

and structure of your source code.

2.1 Clarity and Consistency

 Do ensure that clarity, readability and transparency are paramount. These coding standards strive to ensure that the

resultant code is easy to understand and maintain, but nothing beats fundamentally clear, concise, self-documenting code.

 Do ensure that when applying these coding standards that they are applied consistently.

2.2 Formatting and Style

 Do not use tabs. It's generally accepted across Microsoft that tabs shouldn't be used in source files - different text editors

use different spacing to render tabs, and this causes formatting confusion. All code should be written using four spaces for

indentation.

The Visual Studio text editor can be configured to insert spaces for tabs.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 6 Mario A. Epps
 2.0

 You should limit the length of lines of code. Having overly long lines inhibits the readability of code. Break the code line

when the line length is greater than column 78 for readability. If column 78 looks too narrow, use column 86 or 90.

Visual C# sample:

 Do use a fixed-width font, typically Courier New, in your code editor.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 7 Mario A. Epps
 2.0

2.3 Using Libraries

 Do not reference unnecessary libraries, include unnecessary header files, or reference unnecessary assemblies. Paying

attention to small things like this can improve build times, minimize chances for mistakes, and give readers a good

impression.

2.4 Global Variables

 Do minimize global variables. To use global variables properly, always pass them to functions through parameter values.

Never reference them inside of functions or classes directly because doing so creates a side effect that alters the state of

the global without the caller knowing. The same goes for static variables. If you need to modify a global variable, you

should do so either as an output parameter or return a copy of the global.

2.5 Variable Declarations and Initializations

 Do declare local variables in the minimum scope block that can contain them, typically just before use if the language

allows; otherwise, at the top of that scope block.

 Do initialize variables when they are declared.

 Do declare and initialize/assign local variables on a single line where the language allows it. This reduces vertical space

and makes sure that a variable does not exist in an un-initialized state or in a state that will immediately change.

// C++ sample:

HANDLE hToken = NULL;

PSID pIntegritySid = NULL;

STARTUPINFO si = { sizeof(si) };

PROCESS_INFORMATION pi = { 0 };

// C# sample:

string name = myObject.Name;

int val = time.Hours;

' VB.NET sample:

Dim name As String = myObject.Name

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 8 Mario A. Epps
 2.0

Dim val As Integer = time.Hours

 Do not declare multiple variables in a single line. One declaration per line is recommended since it encourages

commenting, and could avoid confusion. As a Visual C++ example,

Good:

CodeExample *pFirst = NULL; // Pointer of the first element.

CodeExample *pSecond = NULL; // Pointer of the second element.

Bad:

CodeExample *pFirst, *pSecond;

The latter example is often mistakenly written as:

CodeExample *pFirst, pSecond;

Which is actually equivalent to:

CodeExample *pFirst;

CodeExample pSecond;

2.6 Function Declarations and Calls

The function/method name, return value and parameter list can take several forms. Ideally this can all fit on a single line. If

there are many arguments that don't fit on a line those can be wrapped, many per line or one per line. Put the return type

on the same line as the function/method name. For example,

Single Line Format:

// C++ function declaration sample:

HRESULT DoSomeFunctionCall(int param1, int param2, int *param3);

// C++ / C# function call sample:

hr = DoSomeFunctionCall(param1, param2, param3);

' VB.NET function call sample:

hr = DoSomeFunctionCall(param1, param2, param3)

Multiple Line Formats:

// C++ function declaration sample:

HRESULT DoSomeFunctionCall(int param1, int param2, int *param3,

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 9 Mario A. Epps
 2.0

int param4, int param5);

// C++ / C# function call sample:

hr = DoSomeFunctionCall(param1, param2, param3,

param4, param5);

' VB.NET function call sample:

hr = DoSomeFunctionCall(param1, param2, param3, _param4, param5)

When breaking up the parameter list into multiple lines, each type/parameter pair should line up under the preceding one,

the first one being on a new line, indented one tab. Parameter lists for function/method calls should be formatted in the

same manner.

// C++ function declaration sample:

HRESULT DoSomeFunctionCall(

 HWND hwnd, // You can comment parameters, too

 T1 param1, // Indicates something

 T2 param2, // Indicates something else

 T3 param3, // Indicates more

 T4 param4, // Indicates even more

 T5 param5); // You get the idea

// C++ / C# function call sample:

hr = DoSomeFunctionCall(

 hwnd,

 param1,

 param2,

 param3,

 param4,

 param5);

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 10 Mario A. Epps
 2.0

' VB.NET function call sample:

hr = DoSomeFunctionCall(_

 hwnd, _

 param1, _

 param2, _

 param3, _

 param4, _

 param5)

 Do order parameters, grouping the in parameters first, the out parameters last. Within the group, order the parameters

based on what will help programmers supply the right values. For example, if a function takes arguments named “left” and

“right”, put “left” before “right” so that their place match their names. When designing a series of functions which take the

same arguments, use a consistent order across the functions. For example, if one function takes an input handle as the first

parameter, all of the related functions should also take the same input handle as the first parameter.

2.7 Statements

 Do not put more than one statement on a single line because it makes stepping through the code in a debugger much

more difficult.

Good:

// C++ / C# sample:

a = 1;

b = 2;

' VB.NET sample:

If (IsAdministrator()) Then

 Console.WriteLine("YES")

End If

Bad:

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 11 Mario A. Epps
 2.0

// C++ / C# sample:

a = 1; b = 2;

' VB.NET sample:

If (IsAdministrator()) Then Console.WriteLine("YES")

2.8 Enums

 Do use an enum to strongly type parameters, properties, and return values that represent sets of values.

 Do favor using an enum over static constants or “#define” values . An enum is a structure with a set of static constants.

The reason to follow this guideline is because you will get some additional compiler and reflection support if you define an

enum versus manually defining a structure with static constants.

Good:

// C++ sample:

enum Color

{

 Red,

 Green,

 Blue

};

// C# sample:

public enum Color

{

 Red,

 Green,

 Blue

}

' VB.NET sample:

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 12 Mario A. Epps
 2.0

Public Enum Color

 Red

 Green

 Blue

End Enum

Bad:

// C++ sample:

const int RED = 0;

const int GREEN = 1;

const int BLUE = 2;

#define RED 0

#define GREEN 1

#define BLUE 2

// C# sample:

public static class Color

{

 public const int Red = 0;

 public const int Green = 1;

 public const int Blue = 2;

}

' VB.NET sample:

Public Class Color

 Public Const Red As Integer = 0

 Public Const Green As Integer = 1

 Public Const Blue As Integer = 2

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 13 Mario A. Epps
 2.0

End Class

 Do not use an enum for open sets (such as the operating system version, names of your friends, etc.).

 Do provide a value of zero on simple enums. Consider calling the value something like “None.” If such value is not

appropriate for this particular enum, the most common default value for the enum should be assigned the underlying value

of zero.

// C++ sample:

enum Compression

{

 None = 0,

 GZip,

 Deflate

};

// C# sample:

public enum Compression

{

 None = 0,

 GZip,

 Deflate

}

' VB.NET sample:

Public Enum Compression

 None = 0

 GZip

 Deflate

End Enum

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 14 Mario A. Epps
 2.0

 Do not use Enum.IsDefined for enum range checks in .NET. There are really two problems with Enum.IsDefined. First it

loads reflection and a bunch of cold type metadata, making it a surprisingly expensive call. Second, there is a versioning

issue here.

Good:

// C# sample:

if (c > Color.Black || c < Color.White)

{

 throw new ArgumentOutOfRangeException(...);

}

' VB.NET sample:

If (c > Color.Black Or c < Color.White) Then

 Throw New ArgumentOutOfRangeException(...);

End If

Bad:

// C# sample:

if (!Enum.IsDefined(typeof(Color), c))

{

 throw new InvalidEnumArgumentException(...);

}

' VB.NET sample:

If Not [Enum].IsDefined(GetType(Color), c) Then

 Throw New ArgumentOutOfRangeException(...);

2.8.1 Flag Enums

Flag enums are designed to support bitwise operations on the enum values. A common example of the flags enum is a list

of options.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 15 Mario A. Epps
 2.0

 Do apply the System.FlagsAttribute to flag enums in .NET. Do not apply this attribute to simple enums.

 Do use powers of two for the flags enum values so they can be freely combined using the bitwise OR operation. For

example,

// C++ sample:

enum AttributeTargets

{

 Assembly = 0x0001,

 Class = 0x0002,

 Struct = 0x0004

 ...

};

// C# sample:

[Flags]

public enum AttributeTargets

{

 Assembly = 0x0001,

 Class = 0x0002,

 Struct = 0x0004,

 ...

}

' VB.NET sample:

<Flags()> _

Public Enum AttributeTargets

 Assembly = &H1

 Class = &H2

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 16 Mario A. Epps
 2.0

 Struct = &H4

 ...

End Enum

 You should provide special enum values for commonly used combinations of flags. Bitwise operations are an advanced

concept and should not be required for simple tasks. FileAccess.ReadWrite is an example of such a special value. However,

you should not create flag enums where certain combinations of values are invalid.

// C++ sample:

enum FileAccess

{

 Read = 0x1,

 Write = 0x2,

 ReadWrite = Read | Write

};

// C# sample:

[Flags]

public enum FileAccess

{

 Read = 0x1,

 Write = 0x2,

 ReadWrite = Read | Write

}

' VB.NET sample:

<Flags()> _

Public Enum FileAccess

 Read = &H1

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 17 Mario A. Epps
 2.0

 Write = &H2

 ReadWrite = Read Or Write

End Enum

 You should not use flag enum values of zero, unless the value represents “all flags are cleared” and is named

appropriately as “None”. The following C# example shows a common implementation of a check that programmers use to

determine if a flag is set (see the if-statement below). The check works as expected for all flag enum values except the value

of zero, where the Boolean expression always evaluates to true.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 18 Mario A. Epps
 2.0

.NET Coding Standards

3.1 Design Guidelines for Developing Class Libraries

These coding standards can be applied to C# and VB.NET. The Design Guidelines for Developing Class Libraries document

on MSDN is a fairly thorough discussion of how to write managed code.

3.2 Files and Structure

 Do not have more than one public type in a source file, unless they differ only in the number of generic parameters or

one is nested in the other. Multiple internal types in one file are allowed.

 Do name the source file with the name of the public type it contains. For example, MainForm class should be in

MainForm.cs file and List<T> class should be in List.cs file.

3.3 Assembly Properties

The assembly should contain the appropriate property values describing its name, copyright, and so on.

Standard Example

Set Copyright to Copyright © Microsoft

Corporation 2010

[assembly: AssemblyCopyright("Copyright © Microsoft Corporation

2010")]

Set AssemblyCompany to Microsoft Corporation [assembly: AssemblyCompany("Microsoft Corporation")]

Set both AssemblyTitle and AssemblyProduct to

the current sample name

[assembly: AssemblyTitle("CSNamedPipeClient")]

[assembly: AssemblyProduct("CSNamedPipeClient")]

3.4 Naming Conventions

3.4.1 General Naming Conventions

 Do use meaning names for various types, functions, variables, constructs and types.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 19 Mario A. Epps
 2.0

 You should not use of shortenings or contractions as parts of identifier names. For example, use “GetWindow” rather

than “GetWin”. For functions of common types, thread process, window procedures, dialog procedures use the common

suffixes for these “ThreadProc”, “DialogProc”, “WndProc”.

 Do not use underscores, hyphens, or any other non-alphanumeric characters.

3.4.2 Capitalization Naming Rules for Identifiers

The following table describes the capitalization and naming rules for different types of identifiers.

Identifier Casing Naming Structure Example

Class,

Structure

PascalCasing Noun public class ComplexNumber {...}

public struct ComplextStruct {...}

Namespace PascalCasing Noun

 Do not use the same name for a

namespace and a type in that

namespace.

namespace

Microsoft.Sample.Windows7

Enumeration PascalCasing Noun

 Do name flag enums with plural nouns

or noun phrases and simple enums with

singular nouns or noun phrases.

[Flags]

public enum ConsoleModifiers

{ Alt, Control }

Method PascalCasing Verb or Verb phrase public void Print() {...}

public void ProcessItem() {...}

Public

Property

PascalCasing Noun or Adjective

 Do name collection proprieties with a

plural phrase describing the items in the

collection, as opposed to a singular

phrase followed by “List” or “Collection”.

public string CustomerName

public ItemCollection Items

public bool CanRead

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 20 Mario A. Epps
 2.0

 Do name Boolean proprieties with an

affirmative phrase (CanSeek instead of

CantSeek). Optionally, you can also prefix

Boolean properties with “Is,” “Can,” or

“Has” but only where it adds value.

Non-public

Field

camelCasing or

_camelCasing

Noun or Adjective.

 Do be consistent in a code sample

when you use the '_' prefix.

private string name;

private string _name;

Event PascalCasing Verb or Verb phrase

 Do give events names with a concept

of before and after, using the present

and past tense.

 Do not use “Before” or “After”

prefixes or postfixes to indicate pre and

post events.

// A close event that is raised after

the window is closed.

public event WindowClosed

// A close event that is raised before a

window is closed.

public event WindowClosing

Delegate PascalCasing Do add the suffix ‘EventHandler’ to

names of delegates that are used in

events.

 Do add the suffix ‘Callback’ to names

of delegates other than those used as

event handlers.

 Do not add the suffix “Delegate” to a

delegate.

public delegate

WindowClosedEventHandler

Interface PascalCasing

‘I’ prefix

Noun public interface IDictionary

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 21 Mario A. Epps
 2.0

Constant PascalCasing

for publicly

visible;

camelCasing for

internally

visible;

All capital only

for

abbreviation of

one or two

chars long.

Noun public const string MessageText =

"A";

private const string messageText =

"B";

public const double PI = 3.14159...;

Parameter,

Variable

camelCasing Noun int customerID;

Generic Type

Parameter

PascalCasing

‘T’ prefix

Noun

 Do name generic type parameters

with descriptive names, unless a single-

letter name is completely self-

explanatory and a descriptive name

would not add value.

 Do prefix descriptive type parameter

names with T.

 You should using T as the type

parameter name for types with one

single-letter type parameter.

T, TItem, TPolicy

Resource PascalCasing Noun

 Do provide descriptive rather than

short identifiers. Keep them concise

where possible, but do not sacrifice

ArgumentExceptionInvalidName

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 22 Mario A. Epps
 2.0

readability for space.

 Do use only alphanumeric characters

and underscores in naming resources.

3.4.3 Hungarian Notation

 Do not use Hungarian notation (i.e., do not encode the type of a variable in its name) in .NET.

3.4.4 UI Control Naming Conventions

UI controls would use the following prefixes. The primary purpose was to make code more readable.

Control Type Prefix

Button btn

CheckBox chk

CheckedListBox lst

ComboBox cmb

ContextMenu mnu

DataGrid dg

DateTimePicker dtp

Form suffix: XXXForm

GroupBox grp

ImageList iml

Label lb

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 23 Mario A. Epps
 2.0

ListBox lst

ListView lvw

Menu mnu

MenuItem mnu

NotificationIcon nfy

Panel pnl

PictureBox pct

ProgressBar prg

RadioButton rad

Splitter spl

StatusBar sts

TabControl tab

TabPage tab

TextBox tb

Timer tmr

TreeView tvw

For example, for the “File | Save” menu option, the “Save” MenuItem would be called “mnuFileSave”.

3.5 Constants

 Do use constant fields for constants that will never change. The compiler burns the values of const fields directly into

calling code. Therefore const values can never be changed without the risk of breaking compatibility.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 24 Mario A. Epps
 2.0

public class Int32

{

 public const int MaxValue = 0x7fffffff;

 public const int MinValue = unchecked((int)0x80000000);

}

Public Class Int32

 Public Const MaxValue As Integer = &H7FFFFFFF

 Public Const MinValue As Integer = &H80000000

End Class

 Do use public static (shared) readonly fields for predefined object instances. If there are predefined instances of the

type, declare them as public readonly static fields of the type itself. For example,

public class ShellFolder

{

 public static readonly ShellFolder ProgramData = new ShellFolder("ProgramData");

 public static readonly ShellFolder ProgramFiles = new ShellFolder("ProgramData");

 ...

}

Public Class ShellFolder

 Public Shared ReadOnly ProgramData As New ShellFolder("ProgramData")

 Public Shared ReadOnly ProgramFiles As New ShellFolder("ProgramFiles")

 ...

End Class

3.6 Strings

 Do not use the ‘+’ operator (or ‘&’ in VB.NET) to concatenate many strings. Instead, you should use StringBuilder for

concatenation. However, do use the ‘+’ operator (or ‘&’ in VB.NET) to concatenate small numbers of strings.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 25 Mario A. Epps
 2.0

Good:

StringBuilder sbXML = new StringBuilder();

sbXML.Append("<parent>");

sbXML.Append("<child>");

sbXML.Append("Data");

sbXML.Append("</child>");

sbXML.Append("</parent>");

Bad:

String sXML = "<parent>";

sXML += "<child>";

sXML += "Data";

sXML += "</child>";

sXML += "</parent>";

 Do use overloads that explicitly specify the string comparison rules for string operations. Typically, this involves calling a

method overload that has a parameter of type StringComparison.

 Do use StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase for comparisons as your safe default for

culture-agnostic string matching, and for better performance.

 Do use string operations that are based on StringComparison.CurrentCulture when you display output to the user.

 Do use the non-linguistic StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase values instead of string

operations based on CultureInfo.InvariantCulture when the comparison is linguistically irrelevant (symbolic, for example).

Do not use string operations based on StringComparison.InvariantCulture in most cases. One of the few exceptions is when

you are persisting linguistically meaningful but culturally agnostic data.

 Do use an overload of the String.Equals method to test whether two strings are equal. For example, to test if two strings

are equal ignoring the case,

if (str1.Equals(str2, StringComparison.OrdinalIgnoreCase))

If (str1.Equals(str2, StringComparison.OrdinalIgnoreCase)) Then

http://msdn.microsoft.com/en-us/library/system.stringcomparison.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinal.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinalignorecase.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.currentculture.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinal.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinalignorecase.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.invariantculture.aspx
http://msdn.microsoft.com/en-us/library/system.string.equals.aspx

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 26 Mario A. Epps
 2.0

 Do not use an overload of the String.Compare or CompareTo method and test for a return value of zero to determine

whether two strings are equal. They are used to sort strings, not to check for equality.

 Do use the String.ToUpperInvariant method instead of the String.ToLowerInvariant method when you normalize strings

for comparison.

3.7 Arrays and Collections

 You should use arrays in low-level functions to minimize memory consumption and maximize performance. In public

interfaces, do prefer collections over arrays.

Collections provide more control over contents, can evolve over time, and are more usable. In addition, using arrays for

read-only scenarios is discouraged as the cost of cloning the array is prohibitive.

However, if you are targeting more skilled developers and usability is less of a concern, it might be better to use arrays for

read-write scenarios. Arrays have a smaller memory footprint, which helps reduce the working set, and access to elements

in an array is faster as it is optimized by the runtime.

 Do not use read-only array fields. The field itself is read-only and can’t be changed, but elements in the array can be

changed. This example demonstrates the pitfalls of using read-only array fields:

Bad:

public static readonly char[] InvalidPathChars = { '\"', '<', '>', '|'};

This allows callers to change the values in the array as follows:

InvalidPathChars[0] = 'A';

Instead, you can use either a read-only collection (only if the items are immutable) or clone the array before returning it.

However, the cost of cloning the array may be prohibitive.

public static ReadOnlyCollection<char> GetInvalidPathChars()

{

 return Array.AsReadOnly(badChars);

}

public static char[] GetInvalidPathChars()

{

http://msdn.microsoft.com/en-us/library/system.string.compare.aspx
http://msdn.microsoft.com/en-us/library/system.string.compareto.aspx
http://msdn.microsoft.com/en-us/library/system.string.toupperinvariant.aspx
http://msdn.microsoft.com/en-us/library/system.string.tolowerinvariant.aspx

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 27 Mario A. Epps
 2.0

 return (char[])badChars.Clone();

}

 You should use jagged arrays instead of multidimensional arrays. A jagged array is an array with elements that are also

arrays. The arrays that make up the elements can be of different sizes, leading to less wasted space for some sets of data

(e.g., sparse matrix), as compared to multidimensional arrays. Furthermore, the CLR optimizes index operations on jagged

arrays, so they might exhibit better runtime performance in some scenarios.

// Jagged arrays

int[][] jaggedArray =

{

 new int[] {1, 2, 3, 4},

 new int[] {5, 6, 7},

 new int[] {8},

 new int[] {9}

};

Dim jaggedArray As Integer()() = New Integer()() _

{ _

 New Integer() {1, 2, 3, 4}, _

 New Integer() {5, 6, 7}, _

 New Integer() {8}, _

 New Integer() {9} _

}

// Multidimensional arrays

int [,] multiDimArray =

{

 {1, 2, 3, 4},

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 28 Mario A. Epps
 2.0

 {5, 6, 7, 0},

 {8, 0, 0, 0},

 {9, 0, 0, 0}

};

Dim multiDimArray(,) As Integer = _

{ _

 {1, 2, 3, 4}, _

 {5, 6, 7, 0}, _

 {8, 0, 0, 0}, _

 {9, 0, 0, 0} _

}

 Do use Collection<T> or a subclass of Collection<T> for properties or return values representing read/write collections,

and use ReadOnlyCollection<T> or a subclass of ReadOnlyCollection<T> for properties or return values representing read-

only collections.

 You should reconsider the use of ArrayList because any objects added into the ArrayList are added as System.Object and

when retrieving values back from the arraylist, these objects are to be unboxed to return the actual value type. So it is

recommended to use the custom typed collections instead of ArrayList. For example, .NET provides a strongly typed

collection class for String in System.Collection.Specialized, namely StringCollection.

 You should reconsider the use of Hashtable. Instead, try other dictionary such as StringDictionary, NameValueCollection,

HybridCollection. Hashtable can be used if less number of values is stored.

 When you are creating a collection type, you should implement IEnumerable so that the collection can be used with

LINQ to Objects.

 Do not implement both IEnumerator<T> and IEnumerable<T> on the same type. The same applies to the nongeneric

interfaces IEnumerator and IEnumerable. In other words, a type should be either a collection or an enumerator, but not

both.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 29 Mario A. Epps
 2.0

 Do not return a null reference for Array or Collection. Null can be difficult to understand in this context. For example, a

user might assume that the following code will work. Return an empty array or collection instead of a null reference.

int[] arr = SomeOtherFunc();

foreach (int v in arr)

{

 ...

}

3.8 Structures

 Do ensure that a state where all instance data is set to zero, false, or null (as appropriate) is valid. This prevents

accidental creation of invalid instances when an array of the structs is created.

 Do implement IEquatable<T> on value types. The Object.Equals method on value types causes boxing and its default

implementation is not very efficient, as it uses reflection. IEquatable<T>.Equals can have much better performance and can

be implemented such that it will not cause boxing.

3.8.1 Structures vs. Classes

 Do not define a struct unless the type has all of the following characteristics:

• It logically represents a single value, similar to primitive types (int, double, etc.).

• It has an instance size fewer than 16 bytes.

• It is immutable.

• It will not have to be boxed frequently.

In all other cases, you should define your types as classes instead of structs.

3.9 Classes

 Do use inheritance to express “is a” relationships such as “cat is an animal”.

 Do use interfaces such as IDisposable to express “can do” relationships such as using “objects of this class can be

disposed”.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 30 Mario A. Epps
 2.0

3.9.1 Fields

 Do not provide instance fields that are public or protected. Public and protected fields do not version well and are not

protected by code access security demands. Instead of using publicly visible fields, use private fields and expose them

through properties.

 Do use public static read-only fields for predefined object instances.

 Do use constant fields for constants that will never change.

 Do not assign instances of mutable types to read-only fields.

3.9.2 Properties

 Do create read-only properties if the caller should not be able to change the value of the property.

 Do not provide set-only properties. If the property getter cannot be provided, use a method to implement the

functionality instead. The method name should begin with Set followed by what would have been the property name.

 Do provide sensible default values for all properties, ensuring that the defaults do not result in a security hole or an

extremely inefficient design.

 You should not throw exceptions from property getters. Property getters should be simple operations without any

preconditions. If a getter might throw an exception, consider redesigning the property to be a method. This

recommendation does not apply to indexers. Indexers can throw exceptions because of invalid arguments. It is valid and

acceptable to throw exceptions from a property setter.

3.9.3 Constructors

 Do minimal work in the constructor. Constructors should not do much work other than to capture the constructor

parameters and set main properties. The cost of any other processing should be delayed until required.

 Do throw exceptions from instance constructors if appropriate.

 Do explicitly declare the public default constructor in classes, if such a constructor is required. Even though some

compilers automatically add a default constructor to your class, adding it explicitly makes code maintenance easier. It also

ensures the default constructor remains defined even if the compiler stops emitting it because you add a constructor that

takes parameters.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 31 Mario A. Epps
 2.0

 Do not call virtual members on an object inside its constructors. Calling a virtual member causes the most-derived

override to be called regardless of whether the constructor for the type that defines the most-derived override has been

called.

3.9.4 Methods

 Do place all out parameters after all of the pass-by-value and ref parameters (excluding parameter arrays), even if this

results in an inconsistency in parameter ordering between overloads.

 Do validate arguments passed to public, protected, or explicitly implemented members. Throw

System.ArgumentException, or one of its subclasses, if the validation fails: If a null argument is passed and the member

does not support null arguments, throw ArgumentNullException. If the value of an argument is outside the allowable range

of values as defined by the invoked method, throw ArgumentOutOfRangeException.

3.9.5 Events

 Do be prepared for arbitrary code executing in the event-handling method. Consider placing the code where the event is

raised in a try-catch block to prevent program termination due to unhandled exceptions thrown from the event handlers.

 Do not use events in performance sensitive APIs. While events are easier for many developers to understand and use,

they are less desirable than Virtual Members from a performance and memory consumption perspective.

3.9.6 Member Overloading

 Do use member overloading rather than defining members with default arguments. Default arguments are not CLS-

compliant and cannot be used from some languages. There is also a versioning issue in members with default arguments.

Imagine version 1 of a method that sets an optional parameter to 123. When compiling code that calls this method without

specifying the optional parameter, the compiler will embed the default value (123) into the code at the call site. Now, if

version 2 of the method changes the optional parameter to 863, then, if the calling code is not recompiled, it will call

version 2 of the method passing in 123 (version 1’s default, not version 2’s default).

Good:

Public Overloads Sub Rotate(ByVal data As Matrix)

 Rotate(data, 180)

End Sub

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 32 Mario A. Epps
 2.0

Public Overloads Sub Rotate(ByVal data As Matrix, ByVal degrees As Integer)

 ' Do rotation here

End Sub

Bad:

Public Sub Rotate(ByVal data As Matrix, Optional ByVal degrees As Integer = 180)

 ' Do rotation here

End Sub

 Do not arbitrarily vary parameter names in overloads. If a parameter in one overload represents the same input as a

parameter in another overload, the parameters should have the same name. Parameters with the same name should

appear in the same position in all overloads.

 Do make only the longest overload virtual (if extensibility is required). Shorter overloads should simply call through to a

longer overload.

3.9.7 Interface Members

 You should not implement interface members explicitly without having a strong reason to do so. Explicitly implemented

members can be confusing to developers because they don’t appear in the list of public members and they can also cause

unnecessary boxing of value types.

 You should implement interface members explicitly, if the members are intended to be called only through the interface.

3.9.8 Virtual Members

Virtual members perform better than callbacks and events, but do not perform better than non-virtual methods.

 Do not make members virtual unless you have a good reason to do so and you are aware of all the costs related to

designing, testing, and maintaining virtual members.

 You should prefer protected accessibility over public accessibility for virtual members. Public members should provide

extensibility (if required) by calling into a protected virtual member.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 33 Mario A. Epps
 2.0

3.9.9 Static Classes

 Do use static classes sparingly. Static classes should be used only as supporting classes for the object-oriented core of the

framework.

3.9.10 Abstract Classes

 Do not define public or protected-internal constructors in abstract types.

 Do define a protected or an internal constructor on abstract classes.

A protected constructor is more common and simply allows the base class to do its own initialization when subtypes are

created.

public abstract class Claim

{

 protected Claim()

 {

 ...

 }

}

An internal constructor can be used to limit concrete implementations of the abstract class to the assembly defining the

class.

public abstract class Claim

{

 internal Claim()

 {

 ...

 }

}

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 34 Mario A. Epps
 2.0

3.10 Namespaces

 Do use the default namespaces of projects created by Visual Studio in All-In-One Code Framework code samples. It is not

necessary to rename the namespace to the form of Microsoft.Sample.TechnologyName.

3.11 Errors and Exceptions

3.11.1 Exception Throwing

 Do report execution failures by throwing exceptions. Exceptions are the primary means of reporting errors in

frameworks. If a member cannot successfully do what it is designed to do, it should be considered an execution failure and

an exception should be thrown. Do not return error codes.

 Do throw the most specific (the most derived) exception that makes sense. For example, throw ArgumentNullException

and not its base type ArgumentException if a null argument is passed. Throwing System.Exception as well as catching

System.Exception are nearly always the wrong thing to do.

 Do not use exceptions for the normal flow of control, if possible. Except for system failures and operations with potential

race conditions, you should write code that does not throw exceptions. For example, you can check preconditions before

calling a method that may fail and throw exceptions. For example,

// C# sample:

if (collection != null && !collection.IsReadOnly)

{

 collection.Add(additionalNumber);

}

' VB.NET sample:

If ((Not collection Is Nothing) And (Not collection.IsReadOnly)) Then

 collection.Add(additionalNumber)

End If

 Do not throw exceptions from exception filter blocks. When an exception filter raises an exception, the exception is

caught by the CLR, and the filter returns false. This behavior is indistinguishable from the filter executing and returning false

explicitly and is therefore very difficult to debug.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 35 Mario A. Epps
 2.0

' VB.NET sample

' This is bad design. The exception filter (When clause)

' may throw an exception when the InnerException property

' returns null

Try

 ...

Catch e As ArgumentException _

When e.InnerException.Message.StartsWith("File")

 ...

End Try

 Do not explicitly throw exceptions from finally blocks. Implicitly thrown exceptions resulting from calling methods that

throw are acceptable.

3.11.2 Exception Handling

 You should not swallow errors by catching nonspecific exceptions, such as System.Exception, System.SystemException,

and so on in .NET code. Do catch only specific errors that the code knows how to handle. You should catch a more specific

exception, or re-throw the general exception as the last statement in the catch block. There are cases when swallowing

errors in applications is acceptable, but such cases are rare.

Good:

// C# sample:

try

{

 ...

}

catch(System.NullReferenceException exc)

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 36 Mario A. Epps
 2.0

{

 ...

}

catch(System.ArgumentOutOfRangeException exc)

{

 ...

}

catch(System.InvalidCastException exc)

{

 ...

}

' VB.NET sample:

Try

 ...

Catch exc As System.NullReferenceException

 ...

Catch exc As System.ArgumentOutOfRangeException

 ...

Catch exc As System.InvalidCastException

 ...

End Try

Bad:

// C# sample:

try

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 37 Mario A. Epps
 2.0

{

 ...

}

catch (Exception ex)

{

 ...

}

' VB.NET sample:

Try

 ...

Catch ex As Exception

 ...

End Try

 Do prefer using an empty throw when catching and re-throwing an exception. This is the best way to preserve the

exception call stack.

Good:

// C# sample:

try

{

 ... // Do some reading with the file

}

catch

{

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 38 Mario A. Epps
 2.0

 file.Position = position; // Unwind on failure

 throw; // Rethrow

}

' VB.NET sample:

Try

 ... ' Do some reading with the file

Catch ex As Exception

 file.Position = position ' Unwind on failure

 Throw ' Rethrow

End Try

Bad:

// C# sample:

try

{

 ... // Do some reading with the file

}

catch (Exception ex)

{

 file.Position = position; // Unwind on failure

 throw ex; // Rethrow

}

' VB.NET sample:

Try

 ... ' Do some reading with the file

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 39 Mario A. Epps
 2.0

Catch ex As Exception

 file.Position = position ' Unwind on failure

 Throw ex ' Rethrow

End Try

3.12 Resource Cleanup

 Do not force garbage collections with GC.Collect.

3.12.1 Try-finally Block

 Do use try-finally blocks for cleanup code and try-catch blocks for error recovery code. Do not use catch blocks for

cleanup code. Usually, the cleanup logic rolls back resource (particularly, native resource) allocations. For example,

// C# sample:

FileStream stream = null;

try

{

 stream = new FileStream(...);

 ...

}

finally

{

 if (stream != null)

 stream.Close();

}

' VB.NET sample:

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 40 Mario A. Epps
 2.0

Dim stream As FileStream = Nothing

Try

 stream = New FileStream(...)

 ...

Catch ex As Exception

 If (stream IsNot Nothing) Then

 stream.Close()

 End If

End Try

C# and VB.NET provide the using statement that can be used instead of plain try-finally to clean up objects implementing

the IDisposable interface.

// C# sample:

using (FileStream stream = new FileStream(...))

{

 ...

}

' VB.NET sample:

Using stream As New FileStream(...)

 ...

End Using

Many language constructs emit try-finally blocks automatically for you. Examples are C#/VB’s using statement, C#’s lock

statement, VB’s SyncLock statement, C#’s foreach statement, and VB’s For Each statement.

3.12.2 Basic Dispose Pattern

The basic implementation of the pattern involves implementing the System.IDisposable interface and declaring the

Dispose(bool) method that implements all resource cleanup logic to be shared between the Dispose method and the

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 41 Mario A. Epps
 2.0

optional finalizer. Please note that this section does not discuss providing a finalizer. Finalizable types are extensions to this

basic pattern and are discussed in the next section. The following example shows a simple implementation of the basic

pattern:

// C# sample:

public class DisposableResourceHolder : IDisposable

{

 private bool disposed = false;

 private SafeHandle resource; // Handle to a resource

 public DisposableResourceHolder()

 {

 this.resource = ... // Allocates the native resource

 }

 public void DoSomething()

 {

 if (disposed)

 throw new ObjectDisposedException(...);

 // Now call some native methods using the resource

 ...

 }

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 42 Mario A. Epps
 2.0

 protected virtual void Dispose(bool disposing)

 {

 // Protect from being called multiple times.

 if (disposed) return;

 if (disposing)

 {

 // Clean up all managed resources.

 if (resource != null)

 resource.Dispose();

 }

 disposed = true;

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 Private disposed As Boolean = False

 Private resource As SafeHandle ' Handle to a resource

 Public Sub New()

 resource = ... ' Allocates the native resource

 End Sub

 Public Sub DoSomething()

 If (disposed) Then

 Throw New ObjectDisposedException(...)

 End If

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 43 Mario A. Epps
 2.0

 ' Now call some native methods using the resource

 ...

 End Sub

 Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then Return

 If disposing Then

 ' Clean up all managed resources.

 If (resource IsNot Nothing) Then

 resource.Dispose()

 End If

 End If

 disposed = True

 End Sub

End Class

 Do implement the Basic Dispose Pattern on types containing instances of disposable types.

 Do extend the Basic Dispose Pattern to provide a finalizer on types holding resources that need to be freed explicitly and

that do not have finalizers. For example, the pattern should be implemented on types storing unmanaged memory buffers.

 You should implement the Basic Dispose Pattern on classes that themselves don’t hold unmanaged resources or

disposable objects but are likely to have subtypes that do. A great example of this is the System.IO.Stream class. Although it

is an abstract base class that doesn’t hold any resources, most of its subclasses do and because of this, it implements this

pattern.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 44 Mario A. Epps
 2.0

 Do declare a protected virtual void Dispose(bool disposing) method to centralize all logic related to releasing unmanaged

resources. All resource cleanup should occur in this method. The method is called from both the finalizer and the

IDisposable.Dispose method. The parameter will be false if being invoked from inside a finalizer. It should be used to ensure

any code running during finalization is not accessing other finalizable objects. Details of implementing finalizers are

described in the next section.

// C# sample:

protected virtual void Dispose(bool disposing)

{

 if (disposing)

 {

 // Clean up all managed resources.

 if (resource != null)

 resource.Dispose();

 }

 }

}

' VB.NET sample:

Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then Return

 If disposing Then

 ' Clean up all managed resources.

 If (resource IsNot Nothing) Then

 resource.Dispose()

 End If

 End If

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 45 Mario A. Epps
 2.0

 disposed = True

End Sub

 Do implement the IDisposable interface by simply calling Dispose(true) followed by GC.SuppressFinalize(this). The call to

SuppressFinalize should only occur if Dispose(true) executes successfully.

// C# sample:

public void Dispose()

{

 Dispose(true);

 GC.SuppressFinalize(this);

}

' VB.NET sample:

Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

End Sub

 Do not make the parameterless Dispose method virtual. The Dispose(bool) method is the one that should be overridden

by subclasses.

 You should not throw an exception from within Dispose(bool) except under critical situations where the containing

process has been corrupted (leaks, inconsistent shared state, etc.). Users expect that a call to Dispose would not raise an

exception. For example, consider the manual try-finally in this C# snippet:

TextReader tr = new StreamReader(File.OpenRead("foo.txt"));

try

{

 // Do some stuff

}

finally

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 46 Mario A. Epps
 2.0

{

 tr.Dispose();

 // More stuff

}

If Dispose could raise an exception, further finally block cleanup logic will not execute. To work around this, the user would

need to wrap every call to Dispose (within their finally block!) in a try block, which leads to very complex cleanup handlers.

If executing a Dispose(bool disposing) method, never throw an exception if disposing is false. Doing so will terminate the

process if executing inside a finalizer context.

 Do throw an ObjectDisposedException from any member that cannot be used after the object has been disposed.

// C# sample:

public class DisposableResourceHolder : IDisposable

{

 private bool disposed = false;

 private SafeHandle resource; // Handle to a resource

 public void DoSomething()

 {

 if (disposed)

 throw new ObjectDisposedException(...);

 // Now call some native methods using the resource

 ...

 }

 protected virtual void Dispose(bool disposing)

 {

 if (disposed) return;

 // Cleanup

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 47 Mario A. Epps
 2.0

 ...

 disposed = true;

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 Private disposed As Boolean = False

 Private resource As SafeHandle ' Handle to a resource

 Public Sub DoSomething()

 If (disposed) Then

 Throw New ObjectDisposedException(...)

 End If

 ' Now call some native methods using the resource

 ...

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then Return

 ' Cleanup

 ...

 disposed = True

 End Sub

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 48 Mario A. Epps
 2.0

End Class

3.12.3 Finalizable Types

Finalizable types are types that extend the Basic Dispose Pattern by overriding the finalizer and providing finalization code

path in the Dispose(bool) method. The following code shows an example of a finalizable type:

// C# sample:

public class ComplexResourceHolder : IDisposable

{

 bool disposed = false;

 private IntPtr buffer; // Unmanaged memory buffer

 private SafeHandle resource; // Disposable handle to a resource

 public ComplexResourceHolder()

 {

 this.buffer = ... // Allocates memory

 this.resource = ... // Allocates the resource

 }

 public void DoSomething()

 {

 if (disposed)

 throw new ObjectDisposedException(...);

 // Now call some native methods using the resource

 ...

 }

 ~ComplexResourceHolder()

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 49 Mario A. Epps
 2.0

 {

 Dispose(false);

 }

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 // Protect from being called multiple times.

 if (disposed) return;

 if (disposing)

 {

 // Clean up all managed resources.

 if (resource != null)

 resource.Dispose();

 }

 // Clean up all native resources.

 ReleaseBuffer(buffer);

 disposed = true;

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 50 Mario A. Epps
 2.0

 Implements IDisposable

 Private disposed As Boolean = False

 Private buffer As IntPtr ' Unmanaged memory buffer

 Private resource As SafeHandle ' Handle to a resource

 Public Sub New()

 buffer = ... ' Allocates memory

 resource = ... ' Allocates the native resource

 End Sub

 Public Sub DoSomething()

 If (disposed) Then

 Throw New ObjectDisposedException(...)

 End If

 ' Now call some native methods using the resource

 ...

 End Sub

 Protected Overrides Sub Finalize()

 Dispose(False)

 MyBase.Finalize()

 End Sub

 Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 51 Mario A. Epps
 2.0

 If disposed Then Return

 If disposing Then

 ' Clean up all managed resources.

 If (resource IsNot Nothing) Then

 resource.Dispose()

 End If

 End If

 ' Clean up all native resources.

 ReleaseBuffer(Buffer)

 disposed = True

 End Sub

End Class

 Do make a type finalizable, if the type is responsible for releasing an unmanaged resource that does not have its own

finalizer. When implementing the finalizer, simply call Dispose(false) and place all resource cleanup logic inside the

Dispose(bool disposing) method.

// C# sample:

public class ComplexResourceHolder : IDisposable

{

 ...

 ~ComplexResourceHolder()

 {

 Dispose(false);

 }

 protected virtual void Dispose(bool disposing)

 {

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 52 Mario A. Epps
 2.0

 ...

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 ...

 Protected Overrides Sub Finalize()

 Dispose(False)

 MyBase.Finalize()

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ...

 End Sub

End Class

 Do be very careful to make type finalizable. Carefully consider any case in which you think a finalizer is needed. There is a

real cost associated with instances with finalizers, from both a performance and code complexity standpoint.

 Do implement the Basic Dispose Pattern on every finalizable type. See the previous section for details on the basic

pattern. This gives users of the type a means to explicitly perform deterministic cleanup of those same resources for which

the finalizer is responsible.

 You should create and use a critical finalizable object (a type with a type hierarchy that contains CriticalFinalizerObject)

for situations in which a finalizer absolutely must execute even in the face of forced application domain unloads and thread

aborts.

 Do prefer resource wrappers based on SafeHandle or SafeHandleZeroOrMinusOneIsInvalid (for Win32 resource handle

whose value of either 0 or -1 indicates an invalid handle) to writing finalizer by yourself to encapsulate unmanaged

resources where possible, in which case a finalizer becomes unnecessary because the wrapper is responsible for its own

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 53 Mario A. Epps
 2.0

resource cleanup. Safe handles implement the IDisposable interface, and inherit from CriticalFinalizerObject so the finalizer

logic will absolutely execute even in the face of forced application domain unloads and thread aborts.

/// <summary>

/// Represents a wrapper class for a pipe handle.

/// </summary>

[SecurityCritical(SecurityCriticalScope.Everything),

HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true),

SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode = true)]

internal sealed class SafePipeHandle : SafeHandleZeroOrMinusOneIsInvalid

{

 private SafePipeHandle()

 : base(true)

 {

 }

 public SafePipeHandle(IntPtr preexistingHandle, bool ownsHandle)

 : base(ownsHandle)

 {

 base.SetHandle(preexistingHandle);

 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),

 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

 [return: MarshalAs(UnmanagedType.Bool)]

 private static extern bool CloseHandle(IntPtr handle);

 protected override bool ReleaseHandle()

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 54 Mario A. Epps
 2.0

 {

 return CloseHandle(base.handle);

 }

}

/// <summary>

/// Represents a wrapper class for a local memory pointer.

/// </summary>

[SuppressUnmanagedCodeSecurity,

HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true)]

internal sealed class SafeLocalMemHandle : SafeHandleZeroOrMinusOneIsInvalid

{

 public SafeLocalMemHandle()

 : base(true)

 {

 }

 public SafeLocalMemHandle(IntPtr preexistingHandle, bool ownsHandle)

 : base(ownsHandle)

 {

 base.SetHandle(preexistingHandle);

 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),

 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

 private static extern IntPtr LocalFree(IntPtr hMem);

 protected override bool ReleaseHandle()

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 55 Mario A. Epps
 2.0

 {

 return (LocalFree(base.handle) == IntPtr.Zero);

 }

}

 Do not access any finalizable objects in the finalizer code path, as there is significant risk that they will have already been

finalized. For example, a finalizable object A that has a reference to another finalizable object B cannot reliably use B in A’s

finalizer, or vice versa. Finalizers are called in a random order (short of a weak ordering guarantee for critical finalization).

It is OK to touch unboxed value type fields.

Also, be aware that objects stored in static variables will get collected at certain points during an application domain unload

or while exiting the process. Accessing a static variable that refers to a finalizable object (or calling a static method that

might use values stored in static variables) might not be safe if Environment.HasShutdownStarted returns true.

 Do not let exceptions escape from the finalizer logic, except for system-critical failures. If an exception is thrown from a

finalizer, the CLR may shut down the entire process preventing other finalizers from executing and resources from being

released in a controlled manner.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 56 Mario A. Epps
 2.0

Appendix A - Software Design Checklist – Form

Software Design Checklist:

Agency Name Department of Behavioral Health and Developmental Services

Project Name

Phase/Release

Date

Contents of Checklist:

Criteria - “Only one selection per line item will be accepted”. Yes / No / NA

1. Documented system requirements are used as the basis for selecting a design methodology.

2. Resources necessary to perform software design activities on the project (i.e., estimated

staff, development tools) are identified.

3. Using a documented design methodology identifies a software structure.

4. System design entities, inputs, and outputs are derived from the software structure.

5. Customer interfaces are designed in consultation with the system owner.

6. A logical data model that describes the system’s data control flow is constructed.

7. A Functional Design Document is created and distributed to the project team members and

the system owner.

8. A Functional Design Review is performed.

9. At least one In-Phase Assessment is performed before the Functional Design Phase Exit.

10. A system architecture including hardware, software, database, and data communications

structures is specified.

11. An Analysis of Benefits and Costs (ABC) are conducted on several system architecture

alternatives and are used as the basis for an architecture recommendation.

12. Functional Design entities are used as the basis for creating system modules, procedures, and

objects.

13. A physical data model, based on the logical data model, is developed.

14. A system design is approved and baselined.

15. Changes to the system design baseline are managed and controlled.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 57 Mario A. Epps
 2.0

16. A System Design Document is created.

17. A Critical Design Review is conducted.

18. System design activities are reviewed with the project manager/leader both periodically and

as needed.

19. Software Quality Assurance/Improvement periodically reviews and/or audits software design

activities and deliverables and reports the results.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 58 Mario A. Epps
 2.0

Appendix B - Deployment Assessment Checklist – Form

For Deployment of:

Agency Name Department of Behavioral Health and Developmental Services

Project Name

Phase/Release

Date

Criteria - “Only one selection per line item will be accepted”. Yes / No / NA

a. Are system requirements documented?

b. Have system requirements been reviewed and approved by the designated approvers?

c. Has the system design been reviewed and approved by the designated approvers?

d. Are software requirements documented?

e. Have software requirements been reviewed and approved by the designated approvers?

f. Has the software design been reviewed and approved by the designated approvers?

g. Is there a Requirements Traceability Matrix indicating traceability between requirements,

design, and testing?

h. Do test planning documents that describe the overall planning efforts and test approach exist?

i. Is testing, as specified in the test planning documents, complete?

j. Are test results documented?

k. Is product defect-free?

l. Have all remaining defects been documented?

m. Is product acceptance sign-off (e.g., Final Acceptance) complete?

n. Is the product in compliance with documented security standards?

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 59 Mario A. Epps
 2.0

Criteria - “Only one selection per line item will be accepted”. Yes / No / NA

o. Has the risk assessment been executed?

p. Has the security plan been documented?

q. Has there been a security review/test?

r. Have planned configuration audits been executed?

s. Have configuration audit results been documented?

t. Have planned data creation/conversion activities been executed, or are they on schedule to be

completed as planned?

u. Have planned training activities been executed, or are they on schedule to be completed as

planned?

v. Are documents to be produced for the purpose of aiding in installation, support, or use of the

product complete, published, and distributed, or are they on schedule to be completed, published,

and distributed prior to deployment?

w. Are transition to support activities complete, or are they on schedule to be completed as

planned?

x. Are activities for notifying stakeholders of the release on schedule to be completed as planned?

y. Are activities to enable the operation and maintenance of the product on schedule to be

completed as planned?

z. Have site preparation activities been completed?

aa. Have environment preparation activities (e.g., correct OS, memory, etc.) been completed?

bb. Is the selected software technology for the project listed on the enterprise’s technology

catalog, or has the appropriate authority approved the exception?

cc. If the project requires purchased application software products, are all license agreements

complete?

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 60 Mario A. Epps
 2.0

Criteria - “Only one selection per line item will be accepted”. Yes / No / NA

dd. If the project requires purchased application software products, are all maintenance

agreements in place and documented?

ee. If the project requires purchased software products, have those items been installed in the

production environment and tested?

ff. If the project requires purchased hardware products, have those items been installed and

tested?

gg. If the project requires purchased hardware products, has all base application software been

installed and tested?

hh. If the project requires purchased hardware products, are all maintenance agreements in place

and documented?

ii. Is the production environment staged and prepared for release of the product for operational

use?

Signature: ____________________________________ Date: ____________

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 61 Mario A. Epps
 2.0

Appendix C - DBHDS (Central Office) Software Development Platform Inventory

 Sustainable: Applications built on these platforms meet current software engineering standards.

Application

Platform

Description Sustainable Upgradable Upgrade

Imminent

ASP.NET ASP.NET is a unified Web development model that includes the

services necessary to build enterprise-class Web applications.

VB.NET Visual Basic .NET is the result of a significant rebuild of Visual

Basic for the Microsoft .NET Framework.

Classic

Visual Basic

Visual Basic is a third-generation event-driven programming

language and integrated development environment (IDE) from

Microsoft for its .COM programming model first released in 1991.

Classic ASP Active Server Pages (ASP), also known as Classic ASP or ASP

Classic, was Microsoft's first server-side script engine for

dynamically generated web pages.

Access Microsoft Access, also known as Microsoft Office Access, is a

database management system from Microsoft that combines the

relational Microsoft Jet Database Engine with a graphical user

interface and software-development tools.

C# C# is a programming language encompassing imperative,

declarative, functional, and component-oriented programming

disciplines.

CRM 4.0 Microsoft Dynamics CRM is a customer relationship management

software package developed by Microsoft.

CRM 11.0 Microsoft Dynamics CRM is a customer relationship management

software package developed by Microsoft.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 62 Mario A. Epps
 2.0

 Upgradable: Applications built on these platforms will need to be upgraded in the near future. No new

applications will be built on these platforms.

 Upgrade Imminent: Applications built on these platforms will need upgrading immediately. No new applications

will be built on these platforms.

.NET Framework

Microsoft developed the .NET Framework in the late 1990s, originally under the name of Next Generation Windows

Services (NGWS). The .NET Framework is included with Windows Server 2008 and Windows Vista. Version 3.5-4.5 is

included with Windows 7 and Windows Server 2008 R2, and can also be installed on Windows XP and Windows Server

2003.

 On 12 April 2010, .NET Framework 4 was released alongside Visual Studio 2010.

.NET Framework Architecture

Common Language Infrastructure (CLI)

The purpose of the Common Language Infrastructure (CLI) is to provide a language-neutral platform for application

development and execution, including functions for exception handling, garbage collection, security, and interoperability.

By implementing the core aspects of the .NET Framework within the scope of the CL, this functionality will not be tied to a

single language but will be available across the many languages supported by the framework. Microsoft's implementation

of the CLI is called the Common Language Runtime, or CLR.

JavaScript

JavaScript is a prototype-based scripting language that is dynamic. Its syntax was influenced by the language C. The key

design principles within JavaScript are taken from the self and scheme programming languages.

 It is a multi-paradigm

language supporting object-oriented and functional

programming styles. JavaScript is use in applications outside of web

pages; for example, PDF documents, site-specific browsers, and desktop widgets.

ASP.NET

ASP.NET Web pages, known officially as Web Forms,

are the main building blocks for application development.

 Web forms

are contained in files with ".aspx" extensions; these files typically contain static (X) HTML markups. ASP.NET aims for

performance benefits over other script-based technologies (including classic ASP) by compiling the server-side code to one

or more DLL files on a Web server.

 This compilation happens automatically when a web-page is requested. This feature

provides the ease of development offered by scripting languages with the performance benefits of a compiled binary code.

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 63 Mario A. Epps
 2.0

Appendix D - References

The following references were used to develop the guidelines described in this document:

o .Net Framework General Reference: Design Guidelines for Class Library Developers – MSDN Online Reference

o Code Complete - McConnell

o Writing Solid Code - Macguire

o Practical Standards for Microsoft Visual Basic – Foxall

o Practical Guidelines and Best Practices for Visual Basic and Visual C# Developers – Balena & Dimauro

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnamingguidelines.asp

.NET Framework Guidelines and Best Practices

 Department of Behavioral Health and Developmental Services 64 Mario A. Epps
 2.0

Revision History

Date Rev Description Author

12/03/13 1.0 Initial Release Mario Epps

05/12/14 2.0 Updated Mario Epps

