
SQL Server Standards

November 6, 2010

DEPARTMENT OF BEHAVIORAL HEALTH AND DEVELOPMENTAL SERVICES

SQL Server Standards
Design and Development

Office of Information Technology Services

11/6/2010

This document contains design and development conventions and style guidelines that will ensure that
SQL Server database objects will be consistent and superior quality. It includes general guidelines as
well as discussions on naming, formatting, and use patterns.

SQL Server Standards

November 6, 2010

Page ii

I. Contents
Revision History ... iii

II. Database Design ... 1

A. Database Scope .. 1

B. Conceptual Data Model ... 1

C. Logical Data Model ... 1

D. Physical Data Model ... 2

III. Security ... 2

IV. Database Scripting and Promotion... 3

V. SSIS Packages .. 3

VI. Naming Standards .. 4

A. Databases ... 4

B. Schemas ... 4

C. Tables ... 4

D. Views .. 5

E. Columns .. 5

F. Indexes ... 6

G. Keys and Constraints .. 6

H. Stored Procedures .. 7

I. Triggers ... 7

1) DML Triggers.. 8

2) DDL Triggers .. 8

J. User Defined Functions .. 8

K. Rules ... 8

L. Defaults .. 9

M. User Defined Data Types .. 9

N. SSIS Packages .. 9

VII. Data Integrity .. 9

A. Domain Integrity .. 9

B. Entity Integrity .. 10

C. Referential Integrity ... 10

SQL Server Standards

November 6, 2010

Page iii

VIII. Keys and Constraints .. 10

A. Primary Keys ... 10

B. Foreign Keys and Referential Integrity ... 10

C. Unique Keys .. 11

D. Check Constraints ... 11

E. Computed Columns .. 11

IX. Script Writing Standards ... 11

A. Structure ... 11

B. Comment Header ... 12

C. Casing ... 12

D. Error Handling .. 12

E. Tips for Writing Good Stored Procedures .. 13

Revision History
Date Revision Description Author

11/07/2010 1.0 Initial Release Wendy J. Cary

SQL Server Standards

November 6, 2010

Page 1

II. Database Design

A. Database Scope
Define the database scope before beginning modeling. Questions that must be answered to

define the scope are:

1. What will be included in the database?

2. What will not be included?

3. Define the major use of the database (transaction processing, reporing, data

warehouse)

4. Determine the scope of use (within an office, department wide, multiple agencies,

external to the Commonwealth)

5. What other people or applications will be accessing the database? This is critical for

security, user role and group definition planning, and table/view design.

Also, during database design, consideration must be given to items such as Integration

Services (SSIS) and query optimization. Although not directly linked to the design process, the

database design will impact the development and optimization of these objects.

B. Conceptual Data Model
The conceptual data model is a tool used to define initially the domain concepts and database

objects with the project owner. This model is not concerned with the platform on which the

database will reside nor the detailed logic describing relationships among database objects.

Requirements: There are no specific requirements for the approach to take in working with

the conceptual data model. However, it should be as inclusive as possible to

aid in defining the database scope prior to the creation of a logical data

model.

C. Logical Data Model
The logical data model fully describes and defines all database objects and their relationships.

It is independent of how the database will be implemented in a specific database

management system. It consists of three major components:

1. Structure This component consists of the entities (tables) in which the data will be

stored.

2. Constraints This component contains the rules that define what makes the data

valid.

3. Rules This component defines data values such as default values, allow nulls,

etc.

SQL Server Standards

November 6, 2010

Page 2

Requirements:

a. Use Visio to diagram and document the model.

b. Define all entities (tables) including their definitions in extended properties.

c. Define the attributes (columns) of the entities including their definitions in extended

properties.

d. Normalize the database to third normal form if the major use will be transaction

processing. This will increase database performance.

e. De-normalize the database if the major use will be reporting or data warehousing.

This will reduce the number of joins needed to retrieve data, thereby increasing

performance.

f. Define all relationships between the entities, including cardinality (one-to-one, one-

to-many, many-to-many, etc.).

g. Resolve all many-to-many relationships with linking tables.

h. Identify a primary key for each entity.

i. Identify all foreign keys.

j. Identify column attributes (data type, size, allow nulls, etc.).

D. Physical Data Model
The physical data model is the implementation of the logical data model for a particular

database management system. To create SQL Server database objects, generate the DDL

(data definition language) statements from the logical database structure that was developed

using Visio. These statements will include the create statements for tables, columns, indexes,

constraints, etc.

Requirements:

a. Generate all DDL statements directly from the Visio logical data model diagram.

b. Before creating the database object, check for its existence. If it does exist, delete it

prior to executing the create statement.

III. Security
Requirements:

a. Permissions must be set at the minimum necessary to perform required functions.

b. Permissions must also be set at the role level, not individual user level.

c. Use views to prevent direct access to database tables.

d. Use stored procedures instead of embedded SQL statements for all database queries.

e. Do not use .ini files for database logon and connection information.

f. Do not use .config files for database logon information.

g. Encrypt passwords stored in database tables.

SQL Server Standards

November 6, 2010

Page 3

IV. Database Scripting and Promotion
Requirements:

a. All database objects must be scripted. The initial DDL statements must be generated

from the Visio logical data model diagram. SQL Server or Red Gate SQL Doc must be

used to generate scripts for any database modifications.

b. Current change management procedures must be followed whenever promoting

database changes to test and production.

To deploy an SSIS package, do the following:

1. Use the Deployment Utility to specify a deployment output path, set Create

Deployment Utility to “True,” and set Allow Configuration Changes to “True.”

2. Build the deployment package.

3. Copy the deployment directory and associated files to the SSIS folder for your

deployment at \\Co02\ITSDev\Production Changes.

V. SSIS Packages
Requirements:

a. Create, save, and build the package using Business Intelligence Management Studio

(BIDS).

b. Save all packages to the local file system (not a network server).

c. Give each package object a descriptive name (see Naming Conventions) and

document its function at the time it is created.

d. Use the Script Task when a placeholder or dummy task is required and fully document

why it was used.

e. Use the Grouping Container to group tasks in the development environment. This is

for readability since this container has no effect on package execution.

f. Never change the package’s code in Code View. Editing in this manner can introduce

unexpected errors.

g. When creating a new package from an existing package, always generate a new

package ID to avoid confusion between packages with the same ID.

h. Use the File System task for local file operations, not the FTP task.

i. Unlike DTS variables, SSIS variables have scope. Avoid naming locally scoped variables

with the same name as globally scoped variables.

j. Set Generate Debugging Information to “off” when promoting a package to test or

production.

k. When retrieving an SSIS package from VSS, do not use the merge option. This would

corrupt the package’s internal references to other objects within the package.

file://Co02/ITSDev/Production%20Changes

SQL Server Standards

November 6, 2010

Page 4

Warning: Saving Packages with Encryption

When an entire package is saved encrypted, remember that no one can log on with the

credentials of the person who created the package; the entire package would be lost. Saving

with one of the following options will allow the package to be recovered: Encrypt Sensitive

Data with Password, Encrypt Sensitive Data with User Key, or Do Not Save Sensitive Data.

VI. Naming Standards

A. Databases
The database name must consist of the project acronym or name in all caps. For the

development and test environments, add a descriptor (see below) for the environment. Do

not use spaces or underscores in the name.

Examples:

1. Production CCS3

2. Test CCS3Test

3. Development CCS3Dev

B. Schemas
Schema names should be descriptive of the group of objects contained in it and should be all

lower case. Because the schema should be specified when referencing any object in a script,

keep the name short. Schemas can be helpful in securing data. For example if you have users

who are not authorized to view HIPAA data, create a separate schema that contains HIPAA

data and only give the appropriate users permissions to this schema.

C. Tables
Use names that are descriptive of the underlying data contained in the table. Table names

must be plural. The name must consist of a prefix (lower case) plus the table name (mixed

case). A linking table’s name should contain the names of the two tables being linked. Do not

use spaces or special characters in the name.

Prefixes:

1. Base Table tbl

2. Linking Table lnk

3. Lookup lkp

Examples:

1. tblAccounts

2. tblRoles

SQL Server Standards

November 6, 2010

Page 5

3. lnkAccountRoles

4. lkpGenders

D. Views
Use names that are descriptive of the underlying data contained in the view. View names

should reflect the purpose of the view. The name must consist of a prefix (lower case) plus

the associated table name (mixed case). Do not use spaces or special characters in the name.

Prefixes:

1. View vw

Examples:

1. vwAccounts Used when the view returns all values in a single table.

2. vwNewAccounts Used when returning a subset of values in a single table.

3. vwAccountsRoles Used when returning all values from two tables.

4. vwSalesByQuarter Used when returning summary data for reports.

E. Columns
Use names that are descriptive of the data contained in the column.

Rules:

1. The column name must be singular.

2. Do not use prefixes for column names.

3. Do construct a column name with a prepositional phase: instead of DateOfSale, use

SaleDate or DateSold.

4. When the primary key is an identity or autonumber, it must be the singular of the

table name with a suffix of ID (ex. AccountID).

5. Foreign keys must be named the same as the referenced column in the parent table

unless that data is used multiple times in the same table. When used multiple times,

name the column for the purpose it’s being used for (ex. PersonID from tblPeople may

be used in tblEmployees to reference who the employee is and to reference who that

employee’s manager is. In this case, tblEmployees may have both PersonID and

ManagerID as foreign keys to the tblPeople table.)

Examples:

1. FirstName

2. DiscountPercent

3. UnitCost

4. DateOrdered

SQL Server Standards

November 6, 2010

Page 6

All tables must include the following four columns with these descriptions in the extended

properties:

1. CreatedBy Username of the person who inserted the record.

2. CreatedDate Date and time the record was inserted.

3. ModifiedBy Username of the person who last modified the record.

4. ModifiedDate Date and time the record was last modified.

F. Indexes
The index name must include the column name to which it applies. This makes it easier to

analyze execution plans generated by SQL Server. Remember that multiple non-clustered

indexes are allowed on a single table.

Prefixes:

1. Clustered Index PK (same as the primary key)

2. Non-Clustered Index IX

Examples:

1. PKAccountID

2. IXLastName

3. IXEmail

G. Keys and Constraints
Constraint names must reflect the scope of the constraint and the name of the table to which

the constraint applies. The scope includes checking for valid values, unique, primary, and

foreign key constraints.

Prefixes and Naming Rules:

 Type Prefix Naming Rule

1. Primary Key PK table name

2. Foreign Key FK referencing table + referenced table

3. Unique Key UK table name + column1 [+ column2 + …]

4. Check Constraint CK table name + column1 [+ column2 + …]

Examples:

1. PKtblAccounts

2. FKtblAccountslkpGenders

3. UKtblAccountsEmail

4. CKtblAccountsZipCode

SQL Server Standards

November 6, 2010

Page 7

H. Stored Procedures
Customized system stored procedures must be created in the Master database (required by

SQL Server). They must begin with the prefix “sp” followed by the descriptive name of the

stored procedure.

User-created stored procedures have the user defined prefix, followed by the predominant

action, followed by a descriptive name (see descriptors below).

Prefixes:

1. Custom System sp NOTE: Follow the prefix with a descriptive name.

2. User Defined usp NOTE: See list below for remaining naming parts.

Predominant Action and Descriptor:

 Predominant Action Abbr Descriptor

1. Returns multiple rows SEL Plural of table name [+ subset descriptor]

2. Returns single row GET Singular of table name

3. Update UPD Singular of table name

4. Delete DEL Singular of table name

5. Insert INS Singular of table name

6. Insert/update SAV Singular of table name

7. Validate VAL Singular of table name

8. Export EXP Business Process

9. Import IMP Business Process

10. Report-specific RPT Report name

Examples:

1. spGrantDELTALogin

2. uspSELAccountTypesActive

3. uspGETAccount

4. uspUPDAccount

5. uspINSAccount

6. uspEXPActivityLogAudit

7. uspIMPVDHReferrals

8. uspRPTAccountProfile

I. Triggers
SQL Server provides two types of triggers: DDL (data definition language) and DML (data

manipulation language).

SQL Server Standards

November 6, 2010

Page 8

Prefixes:

1. DDL Triggers trd

2. DML Triggers trm

1) DML Triggers

There are two types of DML triggers: AFTER and INSTEAD OF. AFTER triggers can be specified

only on tables and will be executed after the triggering item. INSTEAD OF triggers are

executed in place of the usual triggering item. Multiple triggers can be created for each

triggering action and a single trigger can be created for multiple triggering actions. Because of

this flexibility in creating triggers, describe the business process instead of using a prefix for

the triggering action.

DML Trigger Types:

1. After AFT

2. Instead Of INT

Examples:

1. trmAFTtblAccountsAudit

2. trmINTtblAccountsInsert

2) DDL Triggers

DDL triggers are new to SQL Server 2005. They enable us to perform actions based on

changes to database objects and logons. No naming standards have been developed for DDL

triggers yet. If you need to create this type of trigger, discuss naming with the DBA.

J. User Defined Functions
User defined function names must describe the results the function returns.

Prefixes:

1. User defined function udf

Examples:

1. udfIsAccountActive

2. udfIsAccountInRole

K. Rules
Rules are a backward compatibility feature. CREATE RULE will be removed in future versions

of SQL Server. Avoid using CREATE RULE in new development work and plan to modify

applications that currently use it. Instead, use check constraints. Check constraints replace

this functionality and are the preferred, standard way to restrict values in a column.

SQL Server Standards

November 6, 2010

Page 9

L. Defaults
Defaults are a backward compatibility feature. CREATE DEFAULT will be removed in future

versions of SQL Server. Avoid using CREATE DEFAULT in new development work and plan to

modify applications that currently use it. Instead, use default definitions created using the

DEFAULT keyword of ALTER TABLE or CREATE TABLE.

M. User Defined Data Types
User defined data type names must include the name of the column to which the data type

applies.

Prefixes:

1. User defined type udt

Examples:

1. udtEmail

2. udtUsername

3. udtZipCode

IMPORTANT NOTE: A user-defined type is implemented through a class of an assembly in the

Microsoft .NET Framework common language runtime (CLR). For SQL Server 2005 to

bind a user-defined type to its implementation, the CLR assembly that contains the

implementation of the type must first be registered in SQL Server by using CREATE

ASSEMBLY.

N. SSIS Packages
SSIS Package names must be prefixed with the name of the database followed by the business

process.

Examples:

1. AVPMCreateDiagnosisCodeTable

2. OLISDevLoadProviderData

3. FIMSCopyDataForReports

VII. Data Integrity
There are three types of data integrity. All three must be used to ensure the integrity of

database information.

A. Domain Integrity
Domain integrity places restrictions upon values that are valid for data in a table’s columns.

Enforce domain integrity using data types, allow null attributes, and check constraints.

SQL Server Standards

November 6, 2010

 Page
10

B. Entity Integrity
Entity integrity restricts all rows in a table to being unique. Enforce entity integrity using

primary keys.

C. Referential Integrity
Referential integrity requires that data in one table retain its relationship with data in another

table. Enforce referential integrity using foreign keys.

Declarative or procedural methods may be used to enforce data integrity. Declarative

methods include check constraints and defaults. Procedural methods include stored

procedures, triggers, and application code.

NOTE: Declarative methods are preferred because they are a part of the database, are easy

to implement and manage, and have low overhead. Procedural methods impose a

higher overhead cost on the database and are more complex to implement and

maintain. They are, however, the preferred method (and in many cases the only

method) to implement complex business rules.

VIII. Keys and Constraints

A. Primary Keys
A table can only have one primary key. The primary key consists of one or more columns that

uniquely identify each row within a table. Nulls are not allowed. By default, a clustered index

is created on the primary key.

Required:

a. Set a primary key for each table.

b. Do not create multi-column primary keys. Instead, create a surrogate key by using the

identity property to generate a unique ID for each row. Then, create a unique index

on the columns that uniquely identify a row of data. The exception would be linking

tables where the only two columns in the table are foreign keys.

c. If the primary key contains more than one column (not recommended), the first

column of the key should be the most unique element or the column that will be used

in most queries.

B. Foreign Keys and Referential Integrity
Foreign keys reference columns in another table, thereby establishing a relationship between

the two tables. The referenced column must be a primary key. The referencing column and

referenced column must be of the same datatype.

SQL Server Standards

November 6, 2010

 Page
11

Remember to set the ON DELETE and ON UPDATE properties on a foreign key to properly

enforce referential integrity. Available options are: no action, cascade, set null, and set

default. Use the Cascade option to cause update and delete actions that are initiated against

a referenced table to “cascade” down to the referencing table.

C. Unique Keys
Unique keys are similar to primary keys in that they uniquely identify a row in a table.

However, unique keys will allow one (and only one) row to contain a null value in the

column(s) to which the key applies. Use only if a column or multiple columns other than the

primary key must be unique. Where appropriate, create using the NOT NULL clause to avoid

the problems associated with having one row being able to have the column’s value set to

null.

D. Check Constraints
Check constraints impose restrictions on what can be entered into a column. The expression

for a check constraint must result in a Boolean value that must evaluate to “True.” Use check

constraints instead of the defunct Rules.

E. Computed Columns
Computed columns are virtual columns with their values being computed on demand. There

is no physical column in the database to store the computed value. They avoid the problem of

computed column values and their base values becoming out of synch. The value of a

computed column is the result of an expression that uses column values from the same table

or literal values. An index can be created on a computed column.

Restrictions:

1. Cannot be used as a foreign key.

2. Cannot be used as a default.

3. Cannot use a sub query.

4. Values must come from one table.

IX. Script Writing Standards

A. Structure
Requirements:

a. All create scripts must start with a DROP statement to ensure that another object of

that name does not exist. Be sure to include the IF EXISTS clause to prevent errors if

the object does not exist.

SQL Server Standards

November 6, 2010

 Page
12

b. Do not include a USING statement. Instead, ensure you are executing the script

against the correct database. This prevents the promotion manager from changing

the database name when promoting the script.

c. All scripts must include a comment header after the DROP statement. Use the format

under Comment Header for all scripts.

d. Scripts for Stored Procedures and User Defined Functions must include error handling.

e. Scripts that perform DML (data manipulation language) tasks must include transaction

handling.

f. Always use proper indentation to increase readability.

g. Use in-line comments to describe your code, increasing readability and

understandability by other programmers and DBAs.

B. Comment Header
The description for both the script and the change should be able to clearly communicate the

purpose of the script to non-programmers (for example DBAs) who may have to maintain the

database.

/**

** File: <filename>

** Name: <schema>.<object>

** Desc: <full description>

** Auth: <developer first initial + last name>

** Date: <date created>

** Change History

** Date Author Description

** <mm/dd/yyyy> <developer> <description of change>

**/

C. Casing
 Type of Word Casing

a. Keywords uppercase

b. Data types lowercase

c. Objects and Attributes same as referenced object or attribute

d. User defined PascalCase (first character of each word is capitalized)

D. Error Handling
Error handling is new in SQL Server 2005. It is very similar to error handling in VB.NET. When

using error handling, be sure to log your errors. It is preferable to have a table in the database

to store error logging.

-- Variable to store ErrorLogID value of the row inserted to the log.

DECLARE @ErrorLogID int;

BEGIN TRY

 BEGIN TRANSACTION;

SQL Server Standards

November 6, 2010

 Page
13

 <SQL statement(s)>

 COMMIT TRANSACTION;

END TRY

BEGIN CATCH

 -- Call procedure to print error information.

 EXECUTE <schema>.<stored proc>;

 -- Roll back any active or un-committable transactions before

 -- inserting information in the error log table.

 IF XACT_STATE() <> 0

 BEGIN

 ROLLBACK TRANSACTION;

 END

 EXECUTE <schema>.<stored proc> @ErrorLogID = @ErrorLogID OUTPUT;

END CATCH

GO

E. Tips for Writing Good Stored Procedures
1. Use ANSI 92: Always try to use ANSI 92 syntax. The old syntax will work in SQL Server

2005 but will be deprecated in the next release of SQL Server. As an example, for

joining use:

SELECT <alias1>.<column>, <alias2>.<column>

FROM <schema1>.<table1> <alias1>

INNER JOIN <schema2>.<table2> <alias2> ON

<alias1>.<column> = <alias2>.<column>

Instead of:

SELECT <alias1>.<column>, <alias2>.<column>

FROM <schema1>.<table1> <alias1>, <schema2>.<table2> <alias2>

WHERE <alias1>.<column> = <alias2>.<column>

2. Minimal Use of Variables: Use as few as possible variables. It frees space in cache.

3. Avoid Cursors: Avoid using cursors. Try to use temporary tables / table variables with

identity column and then iterate all the tables using WHILE loop and a looping counter

which will map with the identity column.

4. Avoid the Asterisk: Try to use only the required columns in the SELECT clause instead

of using an asterisk (*). Using an asterisk returns all columns which unnecessarily

create a fat recordset and may create problems when new columns are added to the

underlying tables or views.

5. Minimize Use of Dynamic Queries: Try to minimize usage of dynamic queries. If you

are using a dynamic query like SELECT <column(s)> FROM <schema>.<table>

<alias> WHERE <alias>.<column> = <@variable> then there is no problem.

You can supply a value for the <@variable> parameter and there is no recompilation

of the execution plan. But if you are using a statement like “SELECT * FROM
<schema>.<table> <alias> WHERE <alias>.<column> = “ +

<@variable> and supply a parameter (say 100), the cache will keep the execution

plan for the value of 100 only. If the value changes (to say 101), it will recompile the

SQL Server Standards

November 6, 2010

 Page
14

statement. Hence, this approach is slower than the previous one. TIP: You can get

the exact value of the SQL statement from Profiler.

6. Use Fully Qualified Names: Always use the fully qualified name when calling stored

procedures and functions and within stored procedures and functions. Although it is

preferable to include the database name in the fully qualified name when calling, we

do not use that convention because the database name would need to be altered

during script promotion. Instead, begin with the schema name.

7. Avoid SET NOCOUNT ON: Do not use SET NOCOUNT ON whenever possible. This

returns the message that shows the number of rows affected by the SQL statement.

This can cause extra network traffic and can have some serious impact on

performance when the procedure is called frequently.

8. Use SET vs. SELECT: Although a single select statement can assign values to multiple

variables and is much faster than multiple SET statements assigning values to multiple

variables, SET is the ANSI 92 standards compliant way to assign a value to a variable.

Therefore, use the SET statement:

SET <@Variable1> = <value1>

SET <@Variable2> = <value2>

Instead of:

SELECT <@Variable1> = <value1>, <@Variable2> = <value2>

9. Conditional Operators: The various operators used directly affect how fast a query

can run. Here are the conditional operators used in the WHERE clause, ordered by

their performance: =, >, <, >=, <=, <>, !=, !>, !<.

10. Use EXISTS vs. IN: Try to avoid IN. While checking the existence of a set of values, use

EXISTS instead of IN. IN counts the NULL values also, hence it is slower than EXISTS.

Because IN returns all values and EXISTS only returns a Boolean, IN is heavier than

EXISTS.

WHERE <alias1>.<column> NOT IN (SELECT <alias2>.<column>

FROM <schema>.<table> <alias2>)

WHERE NOT EXISTS (SELECT <alias2>.<column>

 FROM <schema>.<table> <alias2>)

11. Avoid Unnecessary Conditions: Avoid unnecessary conditions in the WHERE clause.

You can easily use the first example below instead of the second one. The second

example uses an extra OR condition which can be avoided.

WHERE LOWER(<alias>.<column>) = ‘test’

WHERE <alias>.<column> = ‘TEST’ OR <alias>.<column> = ‘test’

SQL Server Standards

November 6, 2010

 Page
15

12. Use CAST vs. CONVERT: Try to use CAST instead of CONVERT. CAST is ANSI 92

standard and CONVERT works in SQL Server only. Also, CONVERT may be deprecated

in future releases of SQL Server. You may opt to use CONVERT only when you need to

format the datetime datatype with the style option. CAST cannot do this.

13. Avoid DISTINCT and ORDER BY: If you don’t need the DISTINCT or ORDER BY clauses,

then do not use them. Unnecessary use of these clauses causes extra work for the

database engine, making performance slower.

14. Use UNION ALL vs. UNION: If possible use UNION ALL instead. With UNION, any

duplicates are removed, but with UNION ALL they are not. In particular, use UNION

ALL if the result of each SELECT statement is distinct. NOTE: UNION and UNION ALL

do not guarantee the order in the result.

15. Use Table Variables vs. Temporary Tables: Temporary tables can cause stored

procedures to recompile. But table variables were designed specifically to guard

against stored procedure recompiles during execution.

16. Use Indexes Properly: The data tuning advisor can help identify where to use indexes,

but it does not give the proper result every time. Index scans are much faster than

table scans. So, identify the table scans from the execution plan. But when a table

returns smaller rows, it is better to use a table scan.

17. Use Profiler to Identify Cache Usage: The CacheMiss event class indicates that the

stored procedure is not in the cache. If the SP:CacheMiss class occurs frequently, it

can indicate that more memory should be available to SQL Server, thereby increasing

the size of procedure cache.

18. Avoid NOLOCK: Starting with SQL Server 2005 with the introduction of the snapshot

isolation, there is no justification whatsoever to use NOLOCK. Do not use and hints

(NOLOCK is a hint) until your testing proves that you have an issue that can’t be solved

any other way. If you use a hint, prove it via testing and document it.

